










CNN	=	Neural	Network	 with	a	convoluFon	operaFon	
instead	of	matrix	mulFplicaFon		
in	at	least	one	of	the	layers	

What	are	CNNs	? 
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Input	example	:	one	image	 Output	example	:	one	class	

Neural Networks 



A	typical	CNN	architecture 



Preview: ConvNet is a sequence of Convolutional Layers, interspersed with  
activation functions 
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Biological neuron &  
mathematical model 
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Convolution 



The convolution operation 



The	convoluFon	operaFon	



Convolution Layers 
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Convolution Layer 
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consider a second, green filter 

Convolution Layer 
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Convolution Layer 

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps: 

We stack these up to get a “new image” of size 28x28x6! 
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A closer look at spatial dimensions: 
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7 

7x7 input (spatially)  
assume 3x3 filter 
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A closer look at spatial dimensions: 
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=> 5x5 output 

7 

7x7 input (spatially)  
assume 3x3 filter 
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A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2 
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A closer look at spatial dimensions: 
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7x7 input (spatially)  
assume 3x3 filter  
applied with stride 2 
=> 3x3 output! 
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A closer look at spatial dimensions: 
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N 

F 

F 

N 
Output size: 
(N - F) / stride + 1 

e.g. N = 7, F = 3: 
stride 1 => (7 - 3)/1 + 1 = 5 
stride 2 => (7 - 3)/2 + 1 = 3 
stride 3 => (7 - 3)/3 + 1 = 2.33 :\ 
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Zero-Padding 



e.g. input 7x7 
3x3 filter, applied with stride 1 
pad with 1 pixel border => what is the output? 
 
7x7 output! 
in general, common to see CONV layers with  
stride 1, filters of size FxF, and zero-padding with  
(F-1)/2. (will preserve size spatially) 
e.g. F = 3 => zero pad with 1  

F = 5 => zero pad with 2  
F = 7 => zero pad with 3 
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Zero-Padding: common to the border 



Examples time: 
 
Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 
 
Output volume size: 
(32+2*2-5)/1+1 = 32 spatially, so 
32x32x10 
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Examples time: 

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

(+1 for bias) 

Number of parameters in this layer?  
each filter has 5*5*3 + 1 = 76 params 
=> 76*10 = 760 
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Common settings: 
 
K = (powers of 2, e.g. 32, 64, 128, 512) 

-  F = 3, S = 1, P = 1 
-  F = 5, S = 1, P = 2 
-  F = 5, S = 2, P = ? (whatever fits) 
-  F = 1, S = 1, P = 0 
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Pooling 



Effect	=	invariance	to	small	translaFons	of	the	input	

Pooling 



Pooling 



-  makes the representations smaller and more manageable 
-  operates over each activation map independently 

Pooling 
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Max Pooling 
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Common settings: 
 
F = 2, S = 2 
F = 3, S = 2 

Summary 
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Activation function 
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Activation Functions 

slide from: Fei-Fei Li & Andrej Karpathy & Justin Johnson 



Sigmoid 

tanh tanh(x) 

ReLU max(0,x) 

Maxout  

ELU 

Leaky 
ReLU 

Activation Functions 
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Sigmoid 
1.  Saturated neurons “kill” the  

gradients 
2.  Sigmoid outputs are not zero-  

centered 
3.  exp() is a bit compute expensive 

-  Squashes numbers to range [0,1] 
-  Historically popular since they  

have nice interpretation as a  
saturating “firing rate” of a neuron 

Activation Functions 
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-  Squashes numbers to range [-1,1] 
-  zero centered (nice) 
-  still kills gradients when saturated :( 

tanh(x) 
 
 

[LeCun et al., 1991] 

Activation Functions 
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ReLU 
(Rectified Linear Unit) 

Computes f(x) = max(0,x) 

-  Does not saturate (in +region) 
-  Very computationally efficient 
-  Converges much faster than  

sigmoid/tanh in practice (e.g. 6x) 

-  Not zero-centered output 
-  ReLU units can “die” 

 

Activation Functions 
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-  Does not saturate 
-  Computationally efficient 
-  Converges much faster than  

sigmoid/tanh in practice! (e.g. 6x) 
-  will not “die”. 

 
Leaky ReLU 

Activation Functions 

[Mass et al., 2013]  [He et al., 2015] 
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-  Use ReLU. Be careful with your learning rates 
-  Try out Leaky ReLU / Maxout / ELU 
-  Try out tanh but don’t expect much 
-  Don’t use sigmoid 

In practice 
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Weights initialization 



•  If	the	weights	in	a	network	start	too	small,		
then	the	signal	shrinks	as	it	passes	through	each	layer	unFl	it’s	too	
Fny	to	be	useful.	

•  If	the	weights	in	a	network	start	too	large,		
then	the	signal	grows	as	it	passes	through	each	layer	unFl	it’s	too	
massive	to	be	useful.	

Weights initialization 
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•  All	zero	iniFalizaFon	
	
	

•  Small	random	numbers	
	
	

•  Draw	weights	from	a	Gaussian	distribuFon		
with	standard	deviaFon	of	sqrt(2/n),		
where	n	is	the	number	of	outputs	to	the	neuron	

Weights initialization 



AlexNet example 



Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images 
 
First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Output volume [55x55x96] 
Parameters: (11*11*3)*96 = 35K 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Input: 227x227x3 images  
After CONV1: 55x55x96 
 
Second layer (POOL1): 3x3 filters applied at stride 2  
Output volume: 27x27x96 
Parameters: 0! 
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Case Study: AlexNet 
[Krizhevsky et al. 2012] 

Full (simplified) AlexNet architecture:  
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0  
[27x27x96] MAX POOL1: 3x3 filters at stride 2  
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2  
[13x13x256] MAX POOL2: 3x3 filters at stride 2  
[13x13x256] NORM2: Normalization layer  
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1  
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1  
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1  
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 

Details/Retrospectives: 
- first use of ReLU 
- used Norm layers (not common anymore) 
- heavy data augmentation 
- dropout 0.5 
- batch size 128 
- SGD Momentum 0.9 
- Learning rate 1e-2, reduced by 10  
manually when val accuracy plateaus 
- L2 weight decay 5e-4 
- 7 CNN ensemble: 18.2% -> 15.4% 
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